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Abstract

Structured retail products are unsecured bonds and are subject to the bankruptcy risk

of the issuer. We analyze the price-setting policy of issuers with respect to this credit

risk. Using a long-term data set of discount certificates in the German market, we find

that (i) quoted prices do depend on issuer credit risk, but (ii) this dependency is under-

proportional. Hence, retail investors are only partly compensated for bearing issuer credit

risk. A deeper analysis reveals that the pricing of credit risk is mainly driven by systematic

factors, while issuer-specific credit risk plays only a minor role.
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1 Introduction

The market for structured retail products (SRP) has become a common investment for

private investors. Structured retail products are combinations of stocks and derivatives,

creating packages of specific payoff profiles attractive to certain types of retail investors.

For obtaining such desired payoff profiles, they are willing to pay a margin on top of the

fair price. Additional to risks regarding the contractual payoff, the investor faces the risk

of issuer bankruptcy before the product matures, because SRPs are unsecured products.

The default of Lehman Brothers for example led to losses of about 80% of the investment

amount.

Since issuers act as a market maker and price setter for their own products, quoted prices

do not directly reflect supply and demand, but the pricing policy of the issuer. Because

of lacking valuation skills of retail investors and the opaqueness of the market, they may

incorporate a margin on top the fair value, which is not transparent in terms of size and

composition to investors. In particular issuers may refrain from incorporating their own

default risk into their prices.

A few studies analyze the pricing of default risk for SRPs. Baule et al. (2008) estimate

the quantitative relation between default risk and margins to find the former to be a

significant portion of the latter. It is not clear however whether prices actually react to

credit spread changes. Arnold et al. (2021) analyzes this question with data from the

Swiss primary market around the Lehman default, with SRPs traded over-the-counter

directly between issuer and investor. They find that prices (respectively, margins) do

show a reaction to credit spread changes only after the Lehman default, when attention

to default of private investors was high.

This paper adds to this topic by quantifying if and how much of their credit spread is

priced by issuers into their products on the German secondary market by analyzing a

large data set of discount certificates. We use price data on a daily basis throughout a

nearly ten year period, so that the focus can be put on short-termed pricing reactions

to changes in credit risk. Our approach together with our large data set also provides

a way to directly estimate the extent to which credit risk is priced by quantifying the

proportion of credit risk which is actually reflected in the prices. This direct measure

can be compared across issuers to judge the appropriateness of and variability in between

their default risk pricing. Using a structural model for the pricing of credit risk in SRPs

that incorporates the correlation between market risk and credit risk (Baule et al., 2008),

we show that default risk is priced with percentages ranging from around 10% to 50%

of the adequate amount across our sample issuers. Our results refine and extend the

findings of Arnold et al. (2021), who have shown that default risk pricing exists in the
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Swiss primary market (which is quite different from the German secondary market). As

a further refinement, we distinguish between systematic credit risk and issuer-specific

credit risk. We find that the major portion of credit risk pricing can be explained by

systematic factors, while not all issuers additionally incorporate their specific risk. This

finding is in line with the argumentation of Arnold et al. (2021), in the sense that sys-

tematic credit risk changes, as observed in a crisis, draw more investor attention than

idiosyncratic risk.

Our results add to the literature regarding margin and price setting behavior for SRPs,

especially Wilkens et al. (2003), Stoimenov and Wilkens (2005), Baule (2011), who in-

vestigate the margin setting over the product lifetime. They also relate to literature

regarding information asymmetry between issuers and private investors. Henderson and

Pearson (2011) for example state that issuers exploit the uninformedness of private in-

vestors by hiding certain information or adding complexity. Since the fair price should

adequately consideration default risk, issuer effectively take higher margins in crisis peri-

ods when their quotes reflect credit risk under-proportionally. Entrop et al. (2016) argue

that investor choices are more sensitive to irrational factors. Our findings suggest how-

ever that the investor behavior at least leads to an partial default risk pricing. This is in

line with surveys done by the German derivatives association stating that default risk is

an important feature for investors to select an issuer.

The paper is structured as follows: Section 2 will present the market for SRPs and

discount certificates as well as the models used to evaluate them. Section 3 introduces

margins as well as our hypothesis for issuer pricing and how they relate to margins.

Section 4 explains our empirical approach as well as the data used for evaluation. Section

5 presents our results and robustness checks. Section 6 concludes.

2 SRP market in Germany and pricing of discount certifi-

cates

The market for SRPs has grown to about 74 billion Euros as of June 20201 making up

for about 1% of household financial wealth in Germany. SRPs are unsecured products

and hence investors face default risk in addition to traditional risks. They are traded

in the ’primary market’ over the counter from issuers to investors, typically at issuance,

and are afterwards traded on an exchange referred to as the ’secondary market’. Here

1These numbers are taken from the monthly statistics released by the German derivative associa-
tion
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issuers are required to quote bid and ask spreads to ensure that investors are able to

trade. Besides issuers themselves the market mostly consists of non-professional private

investors, who often lack the ability to accurately price the products and whose trading

decision often rely on irrational factors (see Entrop et al. (2016)). At the Stuttgart

exchange discount certificate are the most traded type and make up for 45, 86% of the

volume for all executed orders regarding investment product and about 6% of the market

volume for all retail products as of 20202. Discount certificates are a combination of

an underlying together with a short position in a respective vanilla call option. Due

to the short option the discount certificate can be viewed in two ways: It can either

be interpreted as an investment in the underlying, which can be bought cheaper than

usually in return of limiting the possible returns or be viewed as a zero bond with the

issuer having the option of returning the underlying instead3. By arbitrage arguments

the discount certificate can therefore be priced by an equivalent portfolio of an underlying

and a short call or a risk free investment with a shorted put option. It is possible to derive

margins by using values for the portfolio constituents from exchange traded underlying

and option prices. This direct approach is often not viable, since there may not be

options to perfectly match the discount certificates inherent parameters. Additionally

the mid-day quotes of our data set do not align in time with prices of options, who are

only available end-of-day to us. Instead we follow the literature and calculate fair values

by applying a pricing formula with parameters derived from exchange traded assets and

options.

For our first analysis we require a default free model to quantify the amount of credit

spread that is priced. We use what is sometimes referred to as the ’practitioners Black

Scholes model’. It takes the classical formulas from Black and Scholes (1973), but instead

of constant volatility and risk free yield it uses a yield curve spanned by maturity and

a volatility surface spanned by maturity and moneyness respectively. In analogy of

Black Scholes we use the definition of moneyness as log Underlying
Strike . The yield curve and

especially the volatility surface allow for calculation close to exchange prices. To find a

fair value for discount certificates, the pay off profile of discount certificates is replicated

with a long position in the underlying and a short position in a vanilla call option with

matching strike, whose value is calculated analytically. Additionally one has to adjust

for the difference between actual maturity date tmat, where the pay off is due, and a

prior reference date tref at which the pay off is determined. This can be done with

an additional discount factor appropriate to the time difference between those points.

Since pay off occurs only a few days after the reference date, this discount is not of

2These numbers are taken from the yearly report of 2020 from the EUWAX exchange in Stuttgart

3This interpretation comes from replicating the discount certificate with a bond and a short put
option.
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large magnitude. Issuers often match the reference date exactly to an exchange traded

call option with the same strike and underlying to allow for perfect hedges. Hence by

inserting the Black-Scholes-formula for call options the price for a discount certificate at

time t is

DCBS
t = e−r(tmat−tref )(St − ct)

= e−r(tmat−tref )
(
St − [St ·N(d1)−K · e−r(tref−t) ·N(d2)]

)
= e−r(tmat−tref )

(
St ·N(−d1) +K · e−r(tref−t) ·N(d2)

)
Within this equation, St and ct are the underlying and call price at time t respectively,

r = r(t, tref ) is the risk free yield and N(·) is the normal cumulative distribution function.

With the strike K and underlying volatility σ = σ(t, tref , log
St
K ) from the volatility

surface the numbers d1 and d2 can be calculated according to

d1 =
log St

K + (r + σ2

2 ) · (tref − t)

σ ·
√

tref − t

and

d2 = d1 − σ ·
√
tref − t .

To quantify the appropriateness of default risk pricing we apply a structural model of

Baule et al. (2008) in our second analysis. The model can be viewed as a combination

of the Black Scholes model and the Merton model of Merton (1974). In this model, the

asset process of the issuer is modelled via a Brownian motion with default triggering

if this process falls below a certain barrier, which relates to the amount of debts the

issuer faces. In the Klein model, the asset process and the underlying process are simply

modelled as correlated Brownian motion instead of independent ones. This correlation

captures the fact that default risk (via the asset process) and underlying are correlated

and should not be priced as if they where independent. As a consequence, the Klein model

includes the famous Hull-White model as a special case for no correlation. A problem

regarding this model however is the difficulty of parameter estimation. Especially asset

level, volatility, default barrier and recovery rate are not easily measurable or available

on a regular timely basis. Additionally the calculation of multivariate normal cumulative

distributions makes it computationally expensive for our large data set. We therefore use
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a approximation of Baule (2021) that addresses both of these issues. The formula uses a

downside delta in analogy to a traditional delta approach given by

∆̃ =
f(St)− f(S−)

St − S− (1)

where St is the current underlying value, S− := E[ST |VT = D] is the expected underlying

value at time T if the asset process Vt reaches the default barrier D, and f is another,

default free pricing formula depending on the current underlying value. In our case we

use the Black Scholes approach from above. The expectancy under the assumptions of

the Klein model takes on the form

S− = St · exp
(
(r − ρ2σ2)T − ρσ

√
TN−1(e−c·T )

)
(2)

with all parameters as in our Black Scholes approach and ρ and c being the underlying-

asset-correlation and the credit spread respectively. The pay off profile is than approx-

imated by a ∆̃ amount in a vulnerable share in the underlying and the rest invested

into vulnerable zero bond, so that the effective credit spread for the asset is a weighted

average of the zero bond credit spread and the effective credit spread of the vulnerable

share:

ceff =
∆̃St · ceff,S + (f(St)− ∆̃St) · c

f(St)
(3)

where ceff,S can be calculated under the Klein model assumptions via

ceff,S = − 1

T
lnN(N−1(e−cT ) + ρσ

√
T ) (4)

The effective credit spread is than capped below by 0 to avoid negative spreads and used

to determine the price p of the certificate via

DCSM
t = e−ceff ·T · f(St) = e−ceff ·T ·DCBS

t (5)

The formulas show that only univariate normal distributions are used and the only ad-

ditional parameters in excess of Black Scholes are credit spread and correlation. For

discount certificates the structural model values and their approximations are close (see

figure 2 in Baule (2021) for example). Furthermore the effective credit spread is usually

somewhere between 0 and the credit spread c. The details of the approximation and

structural model can be found in Baule (2021) and Baule et al. (2008) respectively.
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3 Margins and Hypothesis

Margins measure the excess pricing above some model fair value. Therefore the choice

of fair pricing has an influence on both the absolute height of margins as well as on their

behaviour with regard to certain variables. In our case a way to explicitly define a margin

for a discount certificate is via

mBS = log
DCmarket

DCBS
(6)

or

mSM = log
DCmarket

DCSM
(7)

depending on whether we consider Black Scholes or structural model prices as our fair

value. In literature a ’percentage margin’ like DCmarket

DCBS −1 is chosen, but for our purpose

regarding default risk, the above definition has theoretical benefits. Additionally ’log

margins’, like ours, and ’percentage margins’ are close to each other for small values,

which is usually the case for discount certificates.

Our two models reflect two ways in which issuers might price their default risk. The

Black Scholes closely matches exchange values and hence can be considered a default free

way of pricing. The structural model on the other hand does incorporate credit risk and

even accounts for correlation effects and hence may be considered an ’appropriate way’

to price default risk. As a consequence we can formulate the following two hypothesis:

H0: Issuers determine a fair value via default free values and do not adjust their

margins in response to default risk.

or

H∗
0 : Issuers determine a fair value by correctly pricing their default risk and do not

adjust their margins in response to default risk.

The additional restriction on any margins adjustment to credit spread is necessary. In

an extreme case for example an issuer might price according to the structural model, but

adjusts his margin setting in such a way to directly counter any compensation the model

includes for default risk. In essence this would be equivalent to pricing in a default free

way. The margin may however still depend on other characteristics, especially regarding

the certificate, like maturity, moneyness or competition.

The above hypothesis directly translates into mathematical terms. In fact the require-

ment, that margins may not be correlated with default risk can be directly tested. Be-

cause we of log-margins and the way a credit spread is taken into the calculations via an
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exponential, the margin mBS is linearly affected by the effective credit spread ceff the

issuer takes for his pricing. On the other hand mSM is linearly affected by any excess

credit spread above or below what is used by the structural model. This excess spread

will be zero at all times if issuers price according to the model. One can write this as

mBS = log
DCmarket

DCBS
≈ m− ceffT (8)

where m is the margin the issuer adds on top of his fair value. The equivalent version of

equation 8 for mSM can be written by simply replacing ceff with the excess credit spread

cexcess with respect to the structural model. The linear relationship can be directly tested

with a regression approach of mBS or mSM on the credit spread multiplied with time to

maturity. In fact a non significance in the factor loadings would indicate that the issuer

prices according to the respective model.

However some complications may arise when we would use equation 8 as the basis for

our regression, because the value of m depends on the certificates characteristics. Since

a discount certificate can be replicated by an underlying with a shorted call option, the

margin is rationally bounded be the relative call option price to the underlying price.

Otherwise an investor would simply invest into the underlying instead. Since relative

call option prices increase with remaining time, it is only natural to lower the impact

of maturity by analysing annualized versions of the above log-margins instead. The

first empirical observation regarding this dependency are formulated in the ’life cycle

hypothesis’. It roughly states that margins are big at the beginning of a products’ life

and tend to zero at maturity. It was first reported by Wilkens et al. (2003) and Stoimenov

and Wilkens (2005) for the German market for SRPs and later linked to order flow by

Baule (2011). It has since then been taken as a stylized fact by numerous studies. It can

be expressed mathematical by assuming that m depends linearly on time to maturity T

and has vanishing (or negligible) constant4, so that

m ≈ ma · T (9)

with ma being the annualized margin.

Applying this to equation 8 we arrive at

mBS ≈ [ma − ceff ] · T (10)

⇐⇒ ma − ceff ≈ T−1 · log DCmarket

DCBS
=

mBS

T
=: ma

BS (11)

4It would be more appropriate to assume the Taylor expansion with respect to T has vanishing
constant. One can then omit higher order terms to arrive at the same result.
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The right hand side of 11 is the empirical annualized margin. Similarly for mSM we get

ma − cexcess ≈ T−1 · log DCmarket

DCSM
=

mSM

T
=: ma

SM (12)

Falling back to annualized margins makes average values of margins more comparable

over time, since otherwise they would natural decay under the life cycle hypothesis and

then suddenly jump up whenever a new batch of certificates is issued. Furthermore

annualized margins now linearly depend on the credit spreads instead of its product with

time to maturity.

The annualized versions above will be at the center of our analysis. The expectation

under our hypothesis H0 or H∗
0 are

� Under H0 the values ma
BS should be uncorrelated with the credit spread.

� Under H∗
0 the values ma

SM should be uncorrelated with the credit spread.

We suppressed one important detail in the above expectation regarding our hypothesis:

Even if issuers would price according to the same model (either Black Scholes or struc-

tural), they would also need to use the exact same parameters as we did. One can show

that mBS also depends on the relative greeks
δDCBS

δx
DCBS

with respect to the parameter vector

x used for the Black Scholes model. In first order terms this effect can be written with

the difference in parameters dx as

log
DCmarket

DCBS
≈ m+

δDCBS
δx

DCBS
· dx (13)

where product of the greeks and dx is a scalar product. This fact is a natural source

of error for our empirical analysis. To influence our estimation however this parameter

difference dx would have to be systematically correlated with ceff , which we do not

consider likely. Additionally, some of these errors might be dealt with by the way we

control in our regressions.

4 Empirical Approach

4.1 General Idea

In light of equation (11) and (12) we will utilize a two step approach: We will first

estimate annualized margin (either ma
BS or ma

SM ) at specific times in a cross sectional

regression to obtain a time series. This will be done for both Black Scholes and structural

modelling. In the second step we investigate whether credit spread has any explanatory
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value for these time series. Under H0 or H∗
0 this should not be the case for the respective

model.

While the details in Section 3 hold for any specific certificate, we will estimate the an-

nualized margins on a aggregate level. On a certificate level individual errors may be to

large for the second step to not be influenced heavily be noise. It might be tempting

to simply calculate annualized margins for each certificate individually and then taking

some kind of average. This approach however has a certain number of problems: The

annualized margins’ dependency with regard to moneyness or competition means that

the average is affected by the cross sectional composition of certificate characteristic. To

find a sequence of comparable values, we will instead rely on the estimation of annualized

margins via a cross sectional regression approach. This helps to control for the compo-

sition and has the additional advantage of not enlarging individual errors if margins are

divided by small times to maturity.

The formula we will use for our cross sectional regressions is the following:

mmodel = log
DCmarket,i

DCmodel,i
∼ m̂a

model,t · Ti + δt · Controli + ϵi , (14)

where i is an index that runs over each certificate in the cross section of certificates at

time t, Controli is a vector of control variables and Ti is the time to maturity. ’model’

can either be BS (Black Scholes) or SM (structural model) to estimate either ma
BS or

ma
SM . We will repeat this for different times t and separately for each issuer. The control

variables used for this regression to address the above problematic will be specified in a

later section.

The resulting time series m̂a
model,t is then taken to be our estimate of the average value

of ma
BS or ma

SM depending on time t and on which model was chosen. To test whether

these these two time series are uncorrelated to credit spreads, we perform in our second

step a time series regression of the respective sequence on the credit spread via

m̂a
model,t ∼ αmodel + βmodel

CS · ct + βmodel
Control · Controlt + ϵt (15)

where ct is the credit spread at time t, the vector Controlt consists of control variables

and ’model’ again can be either BS or SM.

Under H0 the values for β
BS
CS should be non significant. Since excess credit spread linearly

affects annualized margins, it is also directly interpretable as the actually percentage of

priced credit spread. Therefore it is expected that this values lies somewhere between 0

(no pricing) and −1 (maximal pricing under Hull White).

Under H∗
0 the factor βSM

CS should show non significance. Otherwise the value quantifies

the excess credit spread (or lack thereof) in percentage of the actual credit spread relative

to what is applied by the structural model.
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4.2 Data Basis

For our approach we use discount certificates because they are among the most traded

SRPs in Germany and are fairly simple to price analytically. This means model error

can be kept at a minimum. Additionally they feature smaller margins compared to more

exotic products, so that a reaction to credit spread becomes more visible in comparison

to background noise. Our data set consists of trade data from the secondary market

for discount certificates on the DAX at the EUWAX stock exchange in Stuttgart. Each

data point is obtained by taking the available information from the Stuttgart exchange

(EUWAX), which is done once a day for every discount certificate that is currently

registered there. Since we get daily quotes and discount certificates average at about

one year to maturity at issuance, the data set holds about 25 million data points. The

information taken includes the ISIN, cap, date of maturity, emission and reference date,

as well as the last traded price together with an exact time stamp. In case no trade

happened before the data was taken from the exchange, the price falls back onto the last

bid price, which necessarily exists, since issuers have to quote one continuously. From

2008 to 2014 most of the time stamps are in the early morning or afternoon, in which

case the price often coincides with the bid quote from the issuer. Afterwards the time

stamp often falls into the late evening. Since the bid ask spread is generally between 1

and 2 cents for discount certificates on the DAX, the trade prices and bid quotes often

coincide. The data is provided by the Vereinigte Wirtschaftsdienste GmbH.

There are two reasons we analyse the secondary market. Firstly, primary market data

consisting of the first sell to costumers is hard to obtain in large quantities. Secondly, even

if one would take primary data they would not necessarily cover a large portion of the time

line, since emissions are typically done in batches. Data with frequent and consistent time

steps is favourable to conduct a time series regression and analyse reactions to default

risk.

For our analysis we select the 11 issuers with biggest data subset accumulating to about

100.000 certificates ranging from late 2008 to 2018. The smaller issuers are excluded

because of gaps in the time line with no or a low number of data points. We additionally

filter the data basis by omitting every discount certificate with time to maturity greater

than 2 years. For long maturities call options are typically sparse and might include

liquidity premiums, so price calculated from these option volatilities might include larger

errors as well. Additionally the emission of longer maturity certificates is not consistent

across issuer, so that these products are also omitted for comparability reasons. As a last

filter, we only select those certificates that have margins above −5% and below 5%. This
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excludes only a small fraction of certificates but allows to filter specific products with

hidden features, that are not shown in our information. The total margin for discount

certificates is found by Entrop et al. (2016) to be on average 0.58% per year before the

financial crisis and about 1.24% during 2008 evaluated against the model of Hull and

White (1995).

Table 1 shows the issuers in our sample as well as their number of data points and some

descriptive statistics of remaining time and moneyness.

[Insert table 1 here]

4.3 Parameters for Black Scholes pricing

To calculate analytical prices, we need values for St and estimates for r and σ for each

data point in our sample.

As the underlying, we use intraday DAX data matched on the exact time stamp of the

data point. For discount certificates after 2014 these stamps often lie outside of the

DAX trading window. Instead we use future prices on the DAX provided to us by the

KKMDB5. This data consists of future prices for all intraday trades at the EUREX on

Futures with the closest maturity tf,mat together with a time stamp t and the number

of contracts traded. This means that maturity of the future approaches zero and then

jumps to the next available maturity typically 3 months ahead. From this data we

calculate a contract weighted average of future prices for each second between 2008 and

2018 where a trade has taken place. For seconds with no trade the last calculated value

is kept constant. This future price average is then discounted with the last available

’implied risk free yield’ calculated by comparing the last values of the DAX Sclose with

the matching future price average Fclose via the formula

r = − 1

tf,mat − t
log

Fclose

Sclose
. (16)

For times outside of the DAX trading window this is roughly6 equivalent to projecting

the Future price movement onto the closing value of the DAX.

For the risk free rate r(t, tref ) we use the Svensson-method from Svensson (1994) and cal-

culate one yield curve for each trading day. All parameters are provided by the Deutsche

Bundesbank 7 on a daily basis. The details can be found in Schich (1997). Since the

5Karlsruher Kapitalmarktdatenbank

6up to minor differences because of different discounting time.

7Time Series BBSIS.D.I.ZST.X.EUR.S1311.B.A604. Z.R.A.A. Z. Z.A where X can be either
B0,B1,B2,B3,T1,T2
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Bundesbank applies the approach to discrete yields, they need to be transformed into

continuous yields, although the difference is small in most cases. We apply this yield

curve to find a risk free rate matching the time to maturity for every data point in our

sample.

For volatility we follow Baule (2011) and use end-of-day option prices for vanilla call and

put options on the DAX traded at the Xetra exchange to calculate an implied volatility

surface. The implied volatility makes use of the Black Scholes framework. Market im-

perfections however may make observed call prices unobtainable under Black Scholes if

they are lower than their intrinsic values. An approach that works for these cases and

also includes the information in put options is as follows:

We calculate an implied underlying value with the call and put prices together with the

risk free yield from Svensson by solving the call-put-parity. For this implied underlying

value both the put and call price are achievable under Black Scholes and the implied

volatility is identical for both. Since certificates do not usually match the exact Maturity

and strike of options available at the exchange, we need to do an interpolation. For any

given certificate we first search the volatility surface for the next and previous available

maturities. Since options are usually available for maturities on the third Friday for

specific months this approach finds a number of options at these maturities. Afterwards

we search these tranches for the strikes directly below and above the discount certificates

cap. The four resulting volatility surface values are then interpolated linearly, first with

respect to strike within their tranch and then with respect to their maturity to match

both parameters of the discount certificate. Since we require discount certificate data to

have remaining time under 2 years, this approach nearly always finds these four volatility

values and hence an appropriate interpolated value. If it does not we omit the discount

certificate from our data. This is mostly the case only a few days before maturity and

only if the reference dates does not match a third Friday of the month.

Since implied volatilities are calculated with closing values of options, but discount cer-

tificates are time stamped intra day, this introduces additional volatility error. Different

studies like Baule et al. (2018) and Lee and Ryu (2019) suggest that implied volatility

decreases intraday. Additionally Lee and Ryu (2019) show that this effect is even more

substantial on days with news announcement and away from the money. However the

intraday decay of volatility would have to be correlated with credit spread movement to

introduce an omitted variables effect, which we do not consider likely. We note however

that even time exact volatilities would not overcome this problem since it is not obvious

that issuer do not use ’old’ volatilities for their price quotes.
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4.4 Parameters for Default Risk

For our structural model, since we are using the approximation of Baule (2021), the only

extra parameters in excess to the Black Scholes ones are a credit spread and a asset-

underlying-correlation. Since our data set is filtered for maturities under 2 years and

discount certificates are mostly emitted for 1-year-maturities, we use the spreads from

1-year-credit default swaps. They are available for almost all of our issuers except for

Vontobel, for which we use the average of the other credit spreads. Although 5-year-

credit default swaps are more liquid, the difference in spreads to the 1-year version might

make them not appropriate. We address this in our robustness section. Additionally,

since we only use larger issuers, the 1-year-CDS are relatively liquid as well, except for

DZ Bank, for which the 5-year-version is no significant improvement. The credit default

swaps are taken in their modified-modified version, which is the European standard for

CDS. We can acquire the credit default swap spreads via Thomson Reuters, who calculate

an average value of market spreads based on credit default swaps for different maturities

from certain key sell-side banks in the CDS market. Picture 1 shows different issuers’

1-year-credit default swap spreads between 2008 and 2018 together with their average

and a CDS index for the European bank sector.

[Insert Figure 1 here]

For correlation between asset and underlying process we follow Baule et al. (2008) and use

equity correlations as proxies. They argue that, while empirical studies like Rösch (2003)

show asset correlations to be lower then equity correlation, this is because these studies

focus on small and medium sized companies. Since our banks can be considered large

and diversified, asset correlation should be closer to equity correlation. A discussion is

given in Düllmann and Scheule (2003) and evidence in Hahnenstein (2004). We estimate

the correlation across 2008 to 2018 as the correlation between log-returns on the issuers

share price and log-returns on the DAX. Table 2 shows the results:

[Insert Table 2 here]

For an analyses of the effect of correlation on discount certificate prices within the ap-

proximation see Baule (2021).

4.5 Control variables

In our two regressions the Control variables fulfil a slightly different purpose. In our cross

sectional regressions (formula 14) we need to make sure, that we control for certificate
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individual characteristics. The literature uses two prominent ones: The first control

variable is moneyness. It is easy to imagine issuers taking a ’safety margin’ for away

from the money certificates. Additionally, this control variables is able to control for

the different moneyness composition of the cross section. Since the time to maturity

composition is mostly dealt with by changing to annualized margins, this means that our

time series is more comparable across time than if we would simply take average values.

We follow the literature and use terms up to second order of moneyness. We assume the

annualized margins to depend on moneyness, so that the controls enter our regression

multiplied with the time to maturity T as factors X · T and X2 · T . This term also

controls for model error due to implied volatility estimation. Hentschel (2003) show that

these errors are large away from the money. The multiplication with T is an additional

benefit here, since volatility error is larger for long running times and should approach

zero close to maturity.

The second control in our cross sectional regression is the competition a specific certificate

faces. This has been done by authors like Baule (2011), Entrop et al. (2016), Arnold et al.

(2021), Schertler (2021) and usually takes on a form like 1− 1
1+n , where n is the number

of similar8 certificates. We follow this by defining n as the number of certificates from

other issues with maturity not more than 5 days away and a cap not farther than 100

DAX points. This definition assumes that the issuers in our sample are representative

for the market, which is justified given that these issuer make up for about 80% of

the market9. One difference to the previous literature is that we assume again that

annualized margin instead of the gross margin depend on competitions. Under the life

cycle hypothesis it would not be consistent that short running certificates react in the

same way to competition as long running ones are. Therefore competition C enters as

C · T as a control into our regression.

Our cross sectional regression is hence fully expressed as

mmodel ∼ m̂a
model,t · Ti + βComp,t · Compi · Ti + βX,t ·X · Ti + βx2,t ·X2 · Ti + ϵi (17)

where ’model’ can either be ’BS’ or ’SM’. In line with the life cycle hypothesis we do not

include an α in our regression. We cover this by adding lower order terms X,X2, C in

our robustness section.

In our time series regression (formula 15) we mainly control for influences on margin

setting behaviour from issuers. Therefore, as a first control variable, we include the

market share for discount certificates of the issuer in the German market. A low market

8for an appropriate notion of ’similar’

9These numbers are taken from the DDV.
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share may incentivize issuers to lower their margins to attract investors, while on the

other hand higher market shares might be a result of lower margins. We therefore have

no definitive expectation of the sign for the regression results concerning market share.

We obtain the data from statistics published by the DDV10 on a quarterly basis. As a

second control variable we include the Sentix private index for the DAX. It is a sentiment

index created by questioning private investors about their short term11 expected DAX

movement. It is bounded by −1 and 1 respectively and available to us on a monthly

basis via Thomson Reuters. Sentiment might influence margin setting, since issuer can

adjust margins when investors tend to buy or sell back more respectively. It also ties to

the literature investigating order flow, especially Baule (2011).

For our time series regression formulas we arrive at the form

m̂a
model,t ∼ αmodel + βmodel

CS · ct + βmodel
SEN · SENt + βmodel

MS ·MSt + ϵt (18)

with ct being the 1-year-credit-swap-spread, SENt being the last available Sentix, MSt

the last available market share for the issuer and model can be either ’BS’ or ’SM’. In

all equations above we suppressed the issuer index for clarity reasons although the whole

approach is done for every one separately.

5 Results

5.1 Main Results

For our empirical estimation of the aggregate annualized margins m̂a
BS,t and m̂a

SM,t

we choose to pool certificates on a weekly basis. In this way we lower the issue of daily

idiosyncratic error by averaging over short times and allow lag between credit spread

and pricing reaction to still be captured. Figure 2 shows the estimations for each issuer

separately together with the respective credit spread. While the estimation is more

volatile for issuers with a lower number of certificates there is still a distinct negative

correlation visible for most issuers. Especially from mid 2011 to end of 2012 the euro

crisis had an strong impact on margins in Germany. It is notable that margin m̂a
BS even

become negative in the period from 2009 to 2013. However values of m̂a
SM always stay

positive, indicating that credit risk is a source of additional profit for issuers. This relates

to the literature of Baule et al. (2008), who find similar results and Entrop et al. (2016),

who see a substantial increase in margins around the financial crisis. Afterwards from

10Deutsche Derivate Verband, Umbrella union for German Derivatives

116 months for this particular Sentix Index
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2013 to end of 2018 margins are positive with values around 0.3% in agreement with the

literature surrounding discount certificates (e.g. see Entrop et al. (2016), Baule (2011)).

Furthermore we see across issuers a slight downward trend beginning in 2016, which is

not related to credit spread events. Table 3 shows descriptive statistics about the values

separated by issuer.

[Insert Table 3 here]

The descriptive statistics agree with our graphs. The average sample size denotes the

number of data points, so that the number also captures that one ISIN might be quoted

multiple times per week (once per trading day). The number of estimates varies across

issuers, because some data is available for them only at a later point than 2009. Table 4

shows results for the annualized margins m̂a
SM,t against the structural model. Here we

see the opposite with mostly higher margins in the crisis period than afterwards. Relative

to the Black Scholes margins, these statistics are higher since the structural model always

results in a lower price (and therefore higher margins) than the Black Scholes model.

For our time series regression, we need to rely on robust estimates of the aggregate

annualized margin. We therefore omit every entry in ma
BS,t or ma

SM,t that had a basis

of less than 100 data points. Due to the weekly pooling, this is almost always the case.

Table 5 shows results from our time series regression (equation (18)) separated by issuer.

[Insert Table 5 here]

The values for βBS
CS range from about −0.06 to −0.53 with significant for 7 out of 11 issuer

on a 0.1% level and 1 additional issuer (Deutsche Bank) at a 1% level. This is in line with

our expectation, that these values should lie in the range between 0 and −1. In light of

our hypothesis H0, that issuers price default free, we can reject H0 in for the 8 issuer with

significance and can only accept it for Citigroup, UBS Bank and Unicredit. This relate

to Arnold et al. (2021), in that credit risk is priced by most issuers, but extends their

results in that issuer pricing is not consistent across issuers. The estimations for αBS can

be interpreted as the average annualized margins if credit spread would be zero. Their

values are in the same range as those from the literature, although we see a wide variation

across issuers. The control variables show some significance, but not consistently across

issuers.

In Contrast the table 6 shows results from our time series regression (equation (18))

separated by issuer.

[Insert Table 6 here]
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For our structural model margins ma
SM we see estimates of βSM

CS in the range of 0.14

to 0.75 with 8 of 11 issuers significant on a 0.1% and one each for 1%, 5% level and

no significance respectively. In light of our hypothesis H∗
0 , that issuers price default

risk correctly, we can therefore reject it for most issuers. The values indicate, how much

excess credit spread is priced by the structural model. For example the value of Citigroup

indicates that they are pricing 75% less of their credit spread than would be correct12.

This results has major implications for investors, who should under these results refrain

from investing when Credit risk is high. The Citigroup reached a credit spread of around

200 basis points in the euro crisis indicating. The 75% missing credit spread indicate

that margins where around 150 basis points higher in this period. On the other hand

values for α, βSM
SEN and βSM

MS are similar to results from ma
BS . This is expected, since

the structural model and Black Scholes mainly differ by their default risk pricing, so the

other variables should not be affected much. Our findings indicate that we must both

reject H0 and H∗
0 on average. Neither do issuers price no credit spread at all, but they

also do not price it correctly. Indeed they are on average across issuers they are missing

about 40% to 50% of their credit spread. Our quantification shows that the reaction to

default risk only makes up for about 30% of credit spread.

5.2 Systematic Credit Risk

In the above results we see huge variation in between issuers. The question arises whether

issuer do even react to their individual credit spreads or whether a market wide effect has

better explanatory power. To investigate this we add the CDS Index of picture 1 into our

time series regression and replace the issuer specific credit spread with the orthogonalized

version with respect to the index. This means that we first regress the issuer specific

credit spread cissuer,t on the CDS Index cindex,t and via

cissuer,t ∼ α+ β · cindex,t + ϵt (19)

and define the orthogonalized version of the issuer credit spread cresid,t with respect to

the CDS Index as the residuals ϵt from the above regression. This time series can be

interpreted as the part of the issuer credit spread that is not correlated with the CDS

Index and captures the idiosyncratic, issuer specific deviation from the sector wide default

risk. We investigate this question for the Black Scholes margins ma
BS . The regression

12as indicated by the structural model
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formula therefore changes to

m̂a
BS,t ∼ αBS

ort +βBS
CS,resid ·cresid,t+βBS

CS,index ·cindex,t+βBS
SEN,ort ·SENt+βBS

MS,ort ·MSt+ϵt

(20)

Table 7 shows the results. We find results for βBS
CS,index that are similar across all issuers

with values from about −10% to −20% and 9 of 11 issuers with p-values of less than

0.1%. Only one issuer is not significant, but has a similar values. On the other hand the

orthogonal part of the issuer specific credit spread looses explanatory power. Only 5 of 11

issuers show about 40% reaction to their idiosyncratic default risk. The results suggest

that the market wide, systematic default risk is more important for pricing than issuer

individual spreads. This is especially visible in our figure 2 for Deutsche Bank, where

the huge spread movements in 2016 and 2018 have no distinct effect like the movement

around the euro crisis.

5.3 Robustness

First Differences

To analyse whether our analysis is driven by time series properties we repeat our time

series regression as a first difference estimation. Instead of equation 18 the formula is

changed to

∆m̂a
model,t ∼ αmodel + βmodel

CS ·∆ct + βmodel
SEN ·∆SENt + βmodel

MS ·∆MSt + ϵt (21)

by replacing the variables with their first differences, where ∆Variablet = Variablet −
Variablet−1. We also repeat the approach with monthly pooling instead of weekly to

investigate short versus long term changes. Table 8 shows the results for both the Black

Scholes margins mBS and structural model margins mSM .

[Insert Table 8 here]

The first difference results show that significance shifts towards the structural model.

Most issuers loose significance on a weekly level, but some is retained on a monthly pool-

ing. This indicates that the pricing may not necessarily be driven by the credit spread

movements directly. It is also a strong indicator that investment in a crisis period is

unfavourable for investors, with close around 90% of credit spread missing within pricing

for some issuers.
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Constant in Regression

As a further robustness check we test whether the addition of an α into our cross sectional

regression in disregard of the life cycle hypothesis influences our results. The results are

shown in table 9. We see a similar picture to the exclusion of α with slightly varying

values.

5-year-Credit-Spreads

Next, we test whether the choice of the 1-year-credit-default-swap is relevant and replace

it with the more liquid 5-year-credit-default-swap. All issuers remain significant and

negative for the Black Scholes margins. In comparison to the 1-year version Citigroup,

Deutsche Bank and UBS bank get more significant. Table 10 shows the results. They

again differ in values to our main approach but show the same overall picture.

Different Controls

Lastly, we test different controlling regarding moneyness. Because discount certificates

are an underlying with a short call option or a zero bond with a shorted put option, the

margin can rationally never be greater than the relative call price to the underlying or

the relative put price to the zero bond.13 In these cases a private investor would choose to

rather invest in the underlying or zero bond instead of the discount certificate. Another

view is that issuer can ’hide’ more margins in discount certificates, where the respective

option price is high. We therefore replace our moneyness controls with the minimum of

the relative option prices V to the underlying or bond prices respectively. This can be

expressed via

V := min(
Call

Underlying
,

Put

K · e−r·T )

Since the put option part effectively controls margins for positive moneyness and the call

option part for negative moneyness, the margins are in fact bound only by the relative

time value of the options instead of the intrinsic value. The results are shown in table

11 with 6 out of 11 issuers retainining significance and the rest with values close to zero.

One has to interpret the results slightly differently than our main results however. Here

the series m̂a
BS,t measures the difference of annualized margins with respect to a mar-

gin setting behaviour that simply adds a fraction of the option price as a margin, while

our main results looks at the average annualized margins while controlling for moneyness.

13This can be derived by starting with the relation em · (St − Callt) ≤ St or
em · (K · e−r·T − Putt) ≤ K · e−r·T , solving for the margin m and using first order approximation
of the logarithm.
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6 Conclusion

In this paper we have investigated how much credit risk is priced by issuers of SRPs. To

this end, we have analyzed a large data set of discount certificates with price quotes from

the EUWAX exchange in Stuttgart from 2009 to 2018. We tested two hypotheses that (i)

issuers price no default risk at all and (ii) they price it correctly. For our analysis we used

a two-step approach, first estimating a time series of aggregate annualized margins with

respect to a theoretical model via cross sectional regressions and then testing whether this

series shows correlation with credit spread changes via a time series regression. By using

theoretical models (i) without credit risk and (ii) with credit risk, we could effectively

test the two hypotheses.

Both hypothesis had to be rejected for most issuers. Accordingly, credit risk is priced,

but it is not priced correctly. The actually priced credit risk is only a fraction (about

40% to 50% for most issuers) of the true price for credit risk.

Additionally we found that systematic, market-wide credit risk has more explanatory

power for this pricing than idiosyncratic, issuer-specific risk. This might be an indicator

that the pricing is not done directly, but via indirect channels by adjusting margins. In

light of the literature (e.g. Baule (2011), Entrop et al. (2016)) this could be a reaction of

issuers to changes in order flow and trading behaviour of private investors. It also relates

to Arnold et al. (2021) because investor attention to default risk might be more distinct

in a crisis period. The fact that no clear reaction to the high credit spread surges in 2016

for Deutsche Bank is shown, even though it received media attention in Germany, shows

that attention can not be the only factor for default risk pricing.

Since inappropriate pricing is equivalent to increased margins, our results confirm Baule

et al. (2008) in the sense that default risk is a significant part of profit for issuers.

The systematic inability of private investors to proper estimate fair prices for products

(Entrop et al. (2016)) makes it possible for issuers to gain additional profits from investors

in times of crisis. This suggests that information asymmetry and issuer domination on

the SRP market might entail negative consequences for private investors. The recent

study of Schertler (2021) supports this view by concluding that new listings on EUREX

forces issuers to lower margins by reducing the information asymmetry between issuer

and investor regarding the fair value of a product.
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Figure 1: Graph of Credits Spread Index and Credit Default Swap Spread Averages
The figure shows credit default swap spreads as provided by Thomson Reuters of different is-
suers from 2008 to 2018. The darker dashed line is a credit spread index for the bank sector
and the dark undashed line is the average of the issuer credit default swap spreads. The is-
suers are: Deutsche Bank, Goldman Sachs, BNP Paribas, UBS Bank, Commerzbank, Société
Générale, Citigroup, HSBC Bank, DZ Bank, Unicredit Bank.
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Figure 2: Graphs for Estimates of m̂a
BS,t

The figure shows graphs for the weekly estimates of m̂a
BS,t values separately for each issuer

together with the respective credit spread. The estimation was performed with a regression
approach.
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Figure 2: Graphs for Estimates of m̂a
BS,t (continued)

The figure shows graphs for the weekly estimates of m̂a
BS,t values separately for each issuer

together with the respective credit spread. The estimation was performed with a regression
approach.
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Averages

issuer certificates observations T moneyness discount

BNP Paribas 13050 2588823 0.9 0.05 -12.3%
Citigroup 5237 1427488 1.18 0.07 -14.5%

Commerzbank 16499 3749009 1.15 0.14 -19.3%
Deutsche Bank 16772 4397020 1.29 0.08 -15.5%

DZ Bank 8282 2359508 1.28 0.13 -17.3%
Goldman Sachs 10458 1863865 0.89 0.12 -16.9%
HSBC Trinkaus 5814 2014369 1.5 0.15 -19.1%
Societe Generale 7232 1735091 1.2 0.17 -19.1%

UBS Bank 7391 2297632 1.43 0.1 -19.0%
Unicredit Bank 3184 629190 0.94 0.03 -10.6%

Vontobel Financial Products 9554 2196247 1.04 0.06 -11.8%

total 103473 25258242 1.15 0.1 -16.15%

Table 1: Descriptive Statistics for our Data Set
The table shows descriptive statistics for our dataset of discount certificates split by issuer. The
columns show the number of different ISINs in our time period, the number of overall obser-
vations and averages of time to maturity (T), moneyness and the average discount relative to
buying the underlying directly for the first listing day on the exchange. The moneyness is pos-
itive on average with the underlying above the cap of the discount certificate, so that the inner
value is already at its maximum and the investor only faces downside risks.
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issuer correlation to DAX

Goldman Sachs 0.5
Deutsche Bank 0.62
BNP Paribas 0.7
Citigroup 0.49

Commerzbank 0.62
HSBC Trinkaus 0.59
Societe Generale 0.66

UBS Bank 0.52
Unicredit Bank 0.63

Table 2: Correlation between Issuer Asset and Underlying Process
The table shows estimations of correlation between the issuers equity and the DAX. The esti-
mates are used as proxies for asset to DAX correlations and are calculated by taking the empir-
ical correlation of log returns from closing values of the stock prices and the DAX between the
year 2008 and 2018.
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issuer αBS βBS
CS βBS

SEN βBS
MS

BNP Paribas 0.0017∗∗∗ −0.353∗∗∗ 0.0019∗∗ 0.0092∗∗

(0.0005) (0.0609) (0.0007) (0.0036)
Citigroup 0.0052∗∗∗ −0.0649 0.0046∗ 0.1231∗∗∗

(0.001) (0.0578) (0.0021) (0.0295)
Commerzbank 0.0023∗∗∗ −0.2666∗∗∗ 0.004∗∗∗ −0.0026

(0.0006) (0.0295) (0.0005) (0.0032)
Deutsche Bank 0.0052∗∗∗ −0.1544∗∗ 0.0009 −0.0188∗∗∗

(0.0008) (0.0545) (0.0005) (0.0036)
DZ Bank 0.0014 −0.4798∗∗∗ −0.0023 0.0127

(0.0016) (0.0821) (0.0016) (0.0076)
Goldman Sachs 0.0062∗∗∗ −0.4388∗∗∗ −0.0018∗ −0.0871∗∗∗

(0.0004) (0.0502) (0.0009) (0.0127)
HSBC Trinkaus 0.0002 −0.5229∗∗∗ 0.001∗ 0.0249∗∗∗

(0.0008) (0.064) (0.0005) (0.0054)
Societe Generale 0.0042∗∗∗ −0.2304∗∗∗ 0.0009 −0.0395∗∗∗

(0.0005) (0.0675) (0.0011) (0.0062)
UBS Bank 0.0086∗∗∗ −0.1403 0.0033∗∗ −0.0938∗∗

(0.0021) (0.0901) (0.001) (0.0322)
Unicredit Bank 0.0037∗∗∗ −0.1589∗∗∗ 0.0 −0.8855∗∗∗

(0.0005) (0.0341) (0.0025) (0.1732)
Vontobel Financial Products 0.0049∗∗∗ −0.3216∗∗∗ 0.0006 −0.0124

(0.0005) (0.0442) (0.0006) (0.0072)

Table 5: Results for Time Series Regression of m̂a
BS,t

The table shows the results for αBS , βBS
CS , β

BS
SEN and βBS

MS from our time series regression of
m̂a

BS,t. The period is from 2008 to 2018 for all issuers except DZ Bank and Deutsche Bank,
who start in mid 2011 and early 2010 respectively. The estimates are performed with the clas-
sic OLS estimators and standard errors are in brackets below and estimated with an HAC-
estimator of Newey and West (1987) with lags equal to 4

√
T . The number of stars indicate an

0.05, 0.01 and 0.001 p-value respectively.
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issuer αSM βSM
CS βSM

SEN βSM
MS

BNP Paribas 0.0018∗∗∗ 0.335∗∗∗ 0.0023∗∗∗ 0.0089∗

(0.0005) (0.0653) (0.0007) (0.0036)
Citigroup 0.005∗∗∗ 0.7536∗∗∗ 0.0042 0.1269∗∗∗

(0.001) (0.063) (0.0022) (0.0302)
Commerzbank 0.0023∗∗∗ 0.4738∗∗∗ 0.0046∗∗∗ −0.0017

(0.0007) (0.0337) (0.0005) (0.0037)
Deutsche Bank 0.006∗∗∗ 0.5893∗∗∗ 0.0007 −0.0225∗∗∗

(0.0009) (0.0586) (0.0006) (0.0038)
DZ Bank 0.0015 0.2573∗∗ −0.0027 0.0136

(0.0016) (0.0843) (0.0016) (0.0076)
Goldman Sachs 0.0063∗∗∗ 0.3479∗∗∗ −0.0016 −0.0849∗∗∗

(0.0004) (0.0452) (0.0008) (0.0124)
HSBC Trinkaus 0.0002 0.1514∗ 0.001∗ 0.0256∗∗∗

(0.0008) (0.0603) (0.0005) (0.0053)
Societe Generale 0.004∗∗∗ 0.5177∗∗∗ 0.0019 −0.0363∗∗∗

(0.0006) (0.0789) (0.0011) (0.0063)
UBS Bank 0.0088∗∗∗ 0.6049∗∗∗ 0.0033∗∗ −0.0979∗∗

(0.0021) (0.0895) (0.001) (0.0321)
Unicredit Bank 0.004∗∗∗ 0.5458∗∗∗ −0.0006 −0.8866∗∗∗

(0.0005) (0.0394) (0.0027) (0.1777)
Vontobel Financial Products 0.0051∗∗∗ 0.4294∗∗∗ 0.0006 −0.0132

(0.0005) (0.0421) (0.0006) (0.0071)

Table 6: Results for Time Series Regression of m̂a
SM,t

The table shows the results for αSM , βSM
CS , βSM

SEN and βSM
MS from our time series regression of

m̂a
SM,t. The period is from 2008 to 2018 for all issuers except DZ Bank and Deutsche Bank,

who start in mid 2011 and early 2010 respectively. The estimates are performed with the clas-
sic OLS estimators and standard errors are in brackets below and estimated with an HAC-
estimator of Newey and West (1987) with lags equal to 4

√
T . The number of stars indicate an

0.05, 0.01 and 0.001 p-value respectively.
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issuer αBS
ort βBS

CS,resid βBS
CS,index βBS

SEN,ort βBS
MS,ort

BNP Paribas 0.0034∗∗∗ −0.0899 −0.1694∗∗∗ 0.0027∗∗∗ 0.0101∗∗∗

(0.0006) (0.0943) (0.0234) (0.0007) (0.003)
Citigroup 0.0109∗∗∗ −0.0007 −0.2262∗∗∗ 0.0081∗∗∗ 0.0421

(0.0016) (0.0524) (0.0544) (0.0021) (0.0329)
Commerzbank 0.003∗∗∗ −0.3344∗∗∗ −0.1058∗∗∗ 0.0038∗∗∗ −0.0034

(0.0006) (0.0421) (0.0148) (0.0005) (0.0035)
Deutsche Bank 0.0031∗∗∗ −0.0322 −0.1047∗∗∗ 0.0019∗∗ −0.0013

(0.0007) (0.056) (0.0179) (0.0006) (0.0044)
DZ Bank 0.0008 −0.4077∗∗∗ −0.0435∗∗∗ −0.0021 0.0077

(0.0016) (0.064) (0.0118) (0.0015) (0.0082)
Goldman Sachs 0.008∗∗∗ −0.3719∗∗∗ −0.2876∗∗∗ −0.0007 −0.0643∗∗∗

(0.0005) (0.0552) (0.0356) (0.0009) (0.0153)
HSBC Trinkaus 0.0019∗ −0.3602∗∗∗ −0.1261∗∗∗ 0.0022∗∗∗ 0.0189∗∗∗

(0.0008) (0.0878) (0.0119) (0.0005) (0.0053)
Societe Generale 0.0056∗∗∗ −0.2012∗ −0.1375∗∗∗ 0.001 −0.0407∗∗∗

(0.0007) (0.0997) (0.036) (0.0011) (0.0054)
UBS Bank 0.0103∗∗∗ 0.0876 −0.1599∗∗∗ 0.0063∗∗∗ −0.0707∗

(0.0021) (0.0788) (0.035) (0.0013) (0.0326)
Unicredit Bank 0.0042∗∗∗ −0.1499 −0.0763∗∗∗ 0.0 −0.8983∗∗∗

(0.0005) (0.0912) (0.0205) (0.0026) (0.1568)
Vontobel Financial Products 0.0047∗∗∗ −0.3521∗∗∗ −0.0961∗∗ 0.0002 −0.0092

(0.0008) (0.0721) (0.0313) (0.0008) (0.0077)

Table 7: Results for orthogonalized Credit Spread in the Time Series Regression
The table shows results from the time series regression, where a CDS-index is used in addition
to the control variables, and the issuer specific credit spread is replaced with an orthogonal-
ized version with respect to the index. The results where performed for Black Scholes mar-
gins m̂a

BS,t and the period is from 01.09.2008 to 31.12.2018 for all issuers except DZ Bank and
Deutsche Bank, who start in mid 2011 and early 2010 respectively. A classical OLS estimators
was used and standard errors are in brackets below and calculated with the HAC-estimator of
Newey and West (1987) with lags equal to 4

√
T . The number of stars indicate an 0.05, 0.01 and

0.001 p-value respectively.
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βBS
CS,FD

weekly monthly

issuer Black Scholes Structural Black Scholes Structural

BNP Paribas 0.1681 0.8268∗∗∗ −0.011 0.663∗∗∗

(0.1061) (0.1115) (0.1497) (0.1415)
Citigroup 0.0887 0.9361∗∗∗ 0.104∗∗ 0.9842∗∗∗

(0.0465) (0.1051) (0.0353) (0.0617)
Commerzbank −0.0614 0.6905∗∗∗ −0.1118∗ 0.6354∗∗∗

(0.0333) (0.0325) (0.0471) (0.0498)
Deutsche Bank −0.0037 0.7432∗∗∗ −0.0323 0.7073∗∗∗

(0.0188) (0.0269) (0.0289) (0.037)
DZ Bank 0.0041 0.7541∗∗∗ −0.3365∗∗ 0.4084∗∗

(0.068) (0.0675) (0.1229) (0.1311)
Goldman Sachs −0.1245∗ 0.6685∗∗∗ −0.2678∗∗ 0.5201∗∗∗

(0.0578) (0.0635) (0.0947) (0.092)
HSBC Trinkaus −0.1203∗ 0.5473∗∗∗ −0.2556∗∗ 0.436∗∗∗

(0.0594) (0.0618) (0.097) (0.0941)
Societe Generale 0.0669 0.9185∗∗ 0.016 0.8479∗∗∗

(0.1729) (0.3468) (0.074) (0.0809)
UBS Bank −0.0218 0.7623∗∗∗ 0.0522 0.8106∗∗∗

(0.0786) (0.0869) (0.0745) (0.0771)
Unicredit Bank −0.0279 0.6473∗∗∗ 0.0456 0.811∗∗∗

(0.1188) (0.112) (0.1253) (0.1658)
Vontobel Financial Products −0.0533 0.7417∗∗∗ −0.207 0.5581∗∗∗

(0.1625) (0.1637) (0.1085) (0.0773)

Table 8: Results for First Difference Estimation of the Time Series Regression
The tables shows results for the time series regression for m̂a

BS,t and m̂a
SM,t performed as a

first differences regression. The cross sectional estimation where pooled on a weekly or monthly
basis to investigate long versus short time lags.
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Black-Scholes-Model Structural model
(Baule Approximation)

issuer αBS βBS
CS αSM βSM

CS

BNP Paribas 0.0017∗∗ −0.3759∗∗∗ 0.0018∗∗ 0.2609∗∗∗

(0.0006) (0.0632) (0.0006) (0.0651)
Citigroup 0.0045∗∗∗ −0.0449 0.0042∗∗∗ 0.7547∗∗∗

(0.0009) (0.0526) (0.001) (0.0579)
Commerzbank 0.0033∗∗∗ −0.1827∗∗∗ 0.0032∗∗∗ 0.5095∗∗∗

(0.0006) (0.0276) (0.0007) (0.0312)
Deutsche Bank 0.0054∗∗∗ −0.082 0.0066∗∗∗ 0.6202∗∗∗

(0.0008) (0.0433) (0.0008) (0.0482)
DZ Bank 0.0015 −0.3347∗∗∗ 0.0015 0.3699∗∗∗

(0.0017) (0.0958) (0.0018) (0.0987)
Goldman Sachs 0.0057∗∗∗ −0.4811∗∗∗ 0.0058∗∗∗ 0.2765∗∗∗

(0.0004) (0.0561) (0.0004) (0.0495)
HSBC Trinkaus −0.0016∗ −0.417∗∗∗ −0.0017∗ 0.228∗∗∗

(0.0008) (0.0618) (0.0008) (0.0586)
Societe Generale 0.0047∗∗∗ −0.323∗∗∗ 0.0045∗∗∗ 0.3762∗∗∗

(0.0006) (0.07) (0.0006) (0.0761)
UBS Bank 0.0109∗∗∗ −0.0556 0.0112∗∗∗ 0.6562∗∗∗

(0.0027) (0.1151) (0.0027) (0.1157)
Unicredit Bank 0.0039∗∗∗ −0.1098∗ 0.004∗∗∗ 0.5772∗∗∗

(0.0008) (0.0498) (0.0008) (0.0537)
Vontobel Financial Products 0.0047∗∗∗ −0.5039∗∗∗ 0.0049∗∗∗ 0.2231∗∗∗

(0.0006) (0.0633) (0.0006) (0.0642)

Table 9: Results for added constant in the Time Series Regression
The table shows the results for βBS

CS , β
SM
CS and alphas from our robustness check changing the

original regression formulas by adding a constant into the cross sectional regressions. The pe-
riod for the time series regression is from 2008 to 2018 except DZ Bank and Deutsche Bank,
who start in mid 2011 and early 2010 respectively. The estimates are performed with the clas-
sic OLS estimators and standard errors are in brackets below and estimated with an HAC-
estimator of Newey and West (1987) with lags equal to 4

√
T . The number of stars indicate an

0.05, 0.01 and 0.001 p-value respectively.
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issuer αBS βBS
CS αSM βSM

CS

BNP Paribas 0.0027∗∗∗ −0.2636∗∗∗ 0.0007 0.2582∗∗∗

(0.0007) (0.0526) (0.0006) (0.0528)
Citigroup 0.0076∗∗∗ −0.1913∗ −0.0035 0.9437∗∗∗

(0.0016) (0.0945) (0.0027) (0.1718)
Commerzbank 0.0031∗∗∗ −0.1876∗∗∗ 0.0 0.4339∗∗∗

(0.0007) (0.0334) (0.0006) (0.0243)
Deutsche Bank 0.0061∗∗∗ −0.1778∗∗∗ 0.0052∗∗∗ 0.4609∗∗∗

(0.0008) (0.0393) (0.0011) (0.0592)
DZ Bank 0.0046∗ −0.3577∗∗∗ 0.0028 0.0172

(0.0022) (0.0866) (0.0022) (0.0725)
Goldman Sachs 0.0089∗∗∗ −0.5405∗∗∗ 0.004∗∗∗ 0.4479∗∗∗

(0.0006) (0.074) (0.0005) (0.0628)
HSBC Trinkaus 0.0022 −0.3644∗∗∗ −0.001 0.1471∗∗

(0.0012) (0.0629) (0.001) (0.0527)
Societe Generale 0.005∗∗∗ −0.1791∗∗ 0.0005 0.5171∗∗∗

(0.0007) (0.0585) (0.0009) (0.0808)
UBS Bank 0.0085∗∗∗ −0.3239∗∗∗ 0.0058∗ 0.3643∗∗

(0.0023) (0.0952) (0.0027) (0.1246)
Unicredit Bank 0.0035∗∗∗ −0.0802∗ 0.0006 0.514∗∗∗

(0.0007) (0.0338) (0.0007) (0.0371)
Vontobel Financial Products 0.0059∗∗∗ −0.2696∗∗∗ 0.0017∗ 0.5199∗∗∗

(0.0008) (0.0745) (0.0008) (0.0635)

Table 10: Results for 5-year-CDS in the Time Series Regression
The table shows the results for βBS

CS , β
SM
CS and alphas from our robustness check replacing 1-

year-CDS-spreads with 5-year-CDS-spreads in our time series regression. The period for the
time series regression is from 2008 to 2018 except DZ Bank and Deutsche Bank, who start in
mid 2011 and early 2010 respectively. The estimates are performed with the classic OLS es-
timators and standard errors are in brackets below and estimated with an HAC-estimator of
Newey and West (1987) with lags equal to 4

√
T . The number of stars indicate an 0.05, 0.01 and

0.001 p-value respectively.

36



issuer αBS βBS
CS βBS

SEN βBS
MS

BNP Paribas −0.0002 −0.3214∗∗∗ 0.0013∗ 0.0059
(0.0005) (0.0523) (0.0005) (0.0033)

Citigroup 0.0034∗∗∗ −0.0349 0.0015 −0.0198
(0.0009) (0.0441) (0.0019) (0.0278)

Commerzbank −0.0005 −0.1215∗∗∗ 0.0023∗∗∗ −0.0025
(0.0007) (0.0227) (0.0004) (0.0031)

Deutsche Bank 0.0002 0.0281 0.0016∗∗∗ −0.0055
(0.0007) (0.0475) (0.0005) (0.0031)

DZ Bank −0.0076∗∗∗ −0.0973 0.0014 0.036∗∗∗

(0.0021) (0.1036) (0.0014) (0.0106)
Goldman Sachs 0.0028∗∗∗ −0.3374∗∗∗ −0.0026∗∗ −0.0543∗∗∗

(0.0004) (0.0534) (0.0008) (0.0128)
HSBC Trinkaus −0.0009 −0.0848 0.0016∗∗∗ −0.0188∗

(0.001) (0.0534) (0.0005) (0.0073)
Societe Generale 0.0021∗∗∗ −0.5434∗∗∗ 0.0002 −0.0297∗∗

(0.0006) (0.0839) (0.0008) (0.0094)
UBS Bank 0.0048∗ 0.031 0.0051∗∗∗ −0.0748∗

(0.0022) (0.0655) (0.0009) (0.0333)
Unicredit Bank 0.0015∗ −0.1444∗∗ −0.0024 −1.1853∗∗∗

(0.0007) (0.0464) (0.0022) (0.1929)
Vontobel Financial Products 0.0023∗∗∗ −0.314∗∗∗ −0.0002 −0.0423∗∗∗

(0.0006) (0.0668) (0.0008) (0.0063)

Table 11: Results for different Moneyness Controls in the Time Series Regression
The table shows the results for the time series regression of m̂a

BS,t, where cross sectional es-
timation is performed with a different moneyness control. The time series regression was un-
changed. The period for the time series regression is from 2008 to 2018 except DZ Bank and
Deutsche Bank, who start in mid 2011 and early 2010 respectively. The estimates are per-
formed with the classic OLS estimators and standard errors are in brackets below and esti-
mated with an HAC-estimator of Newey and West (1987) with lags equal to 4

√
T . The number

of stars indicate an 0.05, 0.01 and 0.001 p-value respectively.
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